
environmental • failure analysis & prevention • health • technology development



$$\mathbf{E}^{\chi}(40)^{\text{celebrating forty years}}$$

A leading engineering & scientific consulting firm dedicated to helping our clients solve their technical problems.





### From Lithium Plating to Lithium – Ion Cell Thermal Runaway

Celina J. Mikolajczak John Harmon Priya Gopalakrishnan Ramesh Godithi Ming Wu

November 19, 2009





#### Who We Are

Exponent is a multi-disciplinary consulting firm dedicated to solving important science, engineering and

regulatory issues for clients







#### **Exponent Offices**












## Exponent®







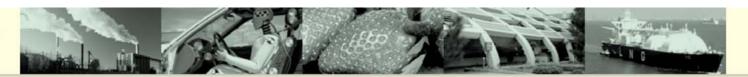


#### **Battery Support Services**

- Cell design review & assessment
- Pack design review & assessment
  - Electronics & BMU consulting
  - Thermal management
  - Structural evaluation
- Pre-compliance testing (UN, UL, BAJ, vendor specific)
- Verification & safety evaluation testing
- Failure analysis & corrective action recommendations
- Manufacturing auditing
- Recall support

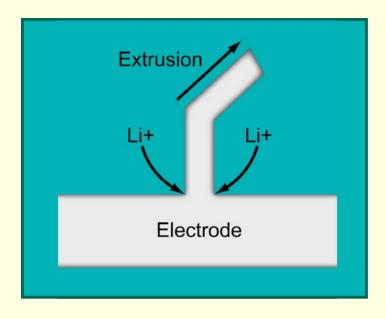
- CTIA Program
- Cell cross-section analysis
- CT scanning
- Micro-reference electrode testing
- Accelerating rate calorimetry (ARC)
- Thermal analysis of materials (TGA/DSC)
- Materials characterization (SEM-EDS, XRD, FTIR, GC-MS)
- Custom abuse and service testing
- Fundamental electrochemical analysis
- Accelerated life testing and prediction
- Gas analysis
- Vent and CID activation



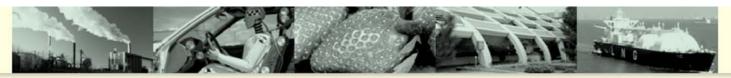



#### What is Lithium Plating?

 Lithium ions deposit as metallic lithium on the negative electrode surface during charging instead of intercalating into graphite

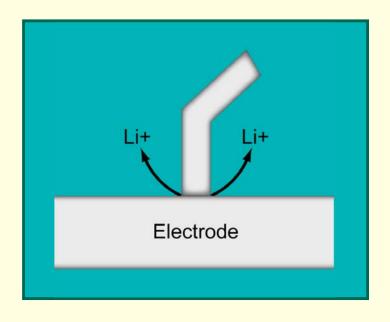


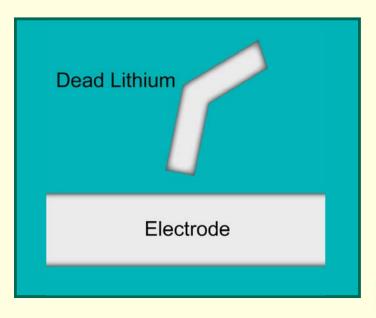

(40)




#### **How Exactly Does Lithium Deposit?**

- Current research suggests
  - Initially, lithium dendrites grow as an extrusion process lithium deposits at the base of the dendrite and pushes the tip through a weak spot in the SEI
  - In later stages, lithium will deposit at dendrite tips and kinks






# Does Plated Lithium Re-Dissolve During Discharge?

- A number of researchers have observed the formation of "dead lithium"
  - On discharge, some lithium dissolves from the dendrite tip and body, but the rate of dissolution at the dendrite base can be higher resulting in lithium separation from the cell base







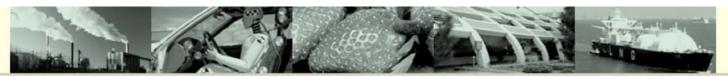


# Does Plated Lithium Re-Dissolve During Discharge?

- Evidence of residual, plated lithium can be found in discharged cells
- Li (s) +  $H_2O \rightarrow LiOH + \frac{1}{2}H_2(g)$

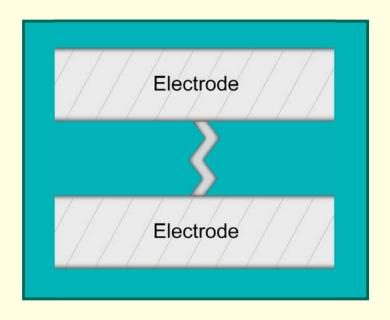


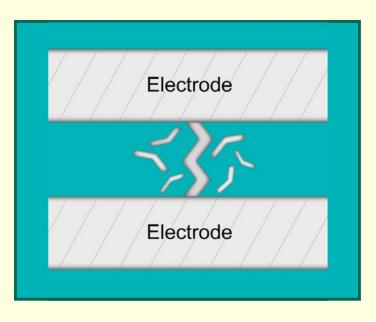





#### What Happens to the Plated Lithium?

- Re-dissolution during discharge
- Formation of dead lithium deposits
- Reaction with electrolyte to form SEI
  - Reduces cell rate capability impedance increases
  - Enhances likelihood of subsequent lithium plating
  - Enhances likelihood of localized over-discharge

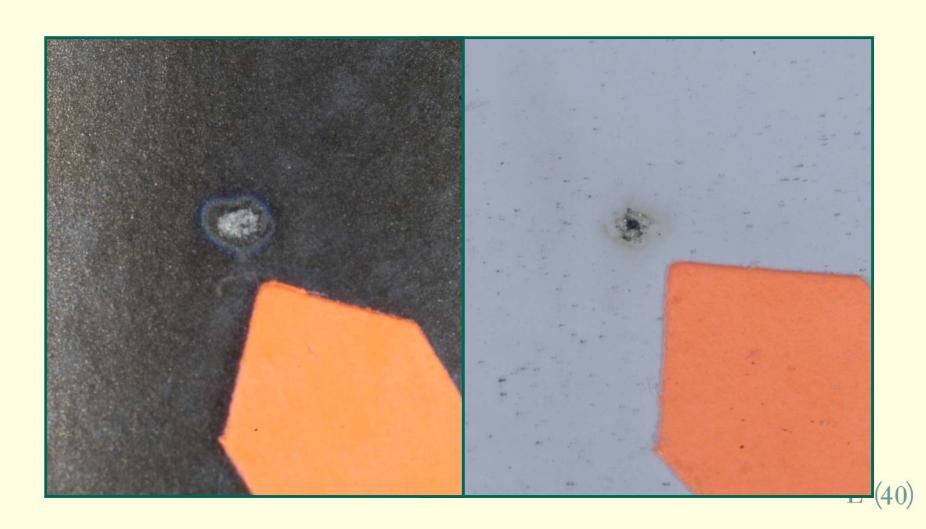





#### **Negative Effects of Plated Lithium**

- Irreversible Loss of Lithium
- Dendrites can cause shorting within the cell
- A mat of dendrites and dead lithium can increase the likelihood that a minor short will lead to cell thermal runaway



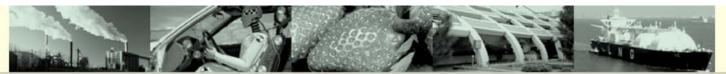







#### **Plated Lithium & Micro-short**

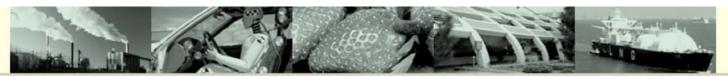







#### Fine Metal Particle Ignition & Combustion

- Metal burning extensively examined in combustion literature
  - Metal (Aluminum) powder in solid rocket propellants
    - Metal particles randomly mixed with oxidizer and binder (polymer)
    - 10 to 40 µm particles
    - Propellant is stable at low temperatures
    - Metal is added to increase specific impulse: higher combustion temperatures, faster energy release once propellant is ignited
  - Self- Propagating High Temperature Combustion Synthesis (SHS) reactions of powder compacted materials
    - Intimate mixing of metal and oxidizer
    - High reaction temperatures achieved due to metal oxidation e.g. thermite reaction



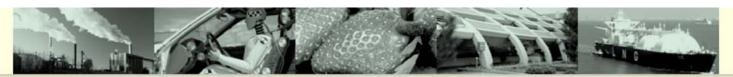



#### Fine Metal Particle Ignition & Combustion

- Solid / liquid fuels are "easier" (lower energy for ignition) to ignite if finely divided and intimately mixed with oxidizer
  - Approach ideal case of a vapor phase pre-mixture
  - For example:
    - Atomization of diesel fuel in engines
    - Dust explosions (grain silos), metal shaving fires
- Metal combustion is typically very energetic
  - Large enthalpy of reaction
  - High flame temperatures relative to typical combustibles



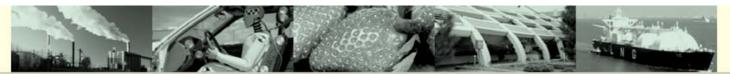



#### **Lithium Ignition Temperatures**

- Melting point of lithium: ~180 C
- Measured ignition temperatures of lithium are at or above the melting point of lithium
  - Melting disrupts protective oxide coatings allowing high reaction rates
- Water (or OH-) likely reduces ignition temperature significantly
  - Lithium reacts significantly with water below its melting point
  - Appears to have a catalytic effect on lithium reaction
  - Uncertain / broad ranges in ignition temperatures suggest that moisture content in gas was not controlled

| Measured Ignition<br>Temperatures* |
|------------------------------------|
| 190-630 C<br>(607-630 C)           |
| 180 – 640 C                        |
| 330 C                              |
| 170-450<br>( 420-600 C)            |
| 310 – 433 C                        |
| > 800 C                            |
| ~ 200 C                            |
|                                    |

\*Data from Lithium Combustion Review by Rhein






#### **Lithium Ignition Temperatures**

- ARC tests of primary cells show sharp exotherms near lithium melting temperature:
  - 172 C lithium thionyl chloride cell
  - 197 C lithium iron disulfide cell
  - 157 C lithium manganese dioxide cell
- DSC tests of lithium with:
  - Dry electrolytes show exotherm at ~ 180 C
  - Electrolyte + 1% water shows exotherm at ~ 140 C
- ARC tests of lithium-ion cells with plated lithium:
  - Exhibit no appreciable change in reactivity below lithium melting temperature
  - Exhibit a sharp exotherm near 150 C
    - Similar to a lithium manganese dioxide cell
    - Near lithium melting temperature
    - Lithium-ion cell electrolyte will include compounds (contaminants or decomposed electrolyte) that readily form OH- groups, likely leading to catalysis of lithium reaction





#### **Lithium Flame Temperatures**

- Form of combustion reaction will depend upon the reactants and final products (Glassman's criteria)
  - Vapor phase (homogeneous) combustion in oxidizing environments where vaporization / dissociation temperature of the oxide product exceeds boiling point of lithium metal (~1342 C)
  - Surface phase (heterogeneous) combustion where vaporization / dissociation temperature of the oxide product is lower than boiling point of lithium metal
- Flame temperatures will be
  - Limited by the dissociation/volatilization temperature of the metal oxide
  - Reduced by presence of diluents

| Possible<br>Product             | Vaporization /<br>Dissociation<br>Temperature |             |
|---------------------------------|-----------------------------------------------|-------------|
| Li <sub>2</sub> 0               | 2563 C                                        | ] ]         |
| LiF                             | 1676 C                                        | Vapor Phase |
| LiCl                            | 1382 C                                        | Burning     |
| Li <sub>2</sub> S               | 1372 C                                        | ] ]         |
| Li <sub>2</sub> CO <sub>3</sub> | 1310 C                                        | 1)          |
| LiOH                            | 924 C                                         | Surface     |
| LiH                             | 850 C                                         | Burning     |
| Li <sub>3</sub> N               | 813 C                                         | ] ]         |





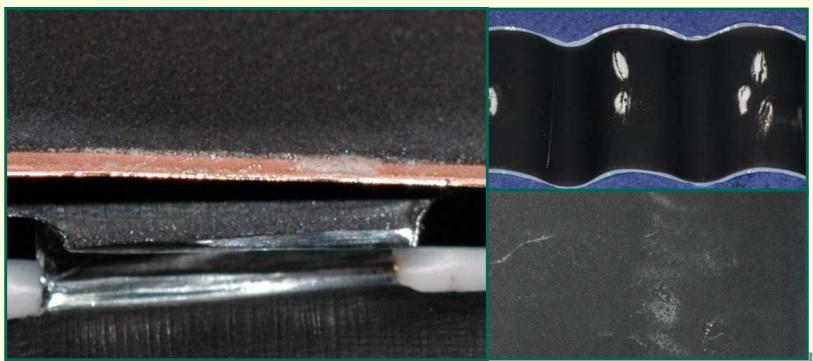
#### **Lithium Combustion Temperatures**

| Reactants                                  | Products                                                                                                          | Flame Temperature or Maximum<br>Measured Temperatures |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Li / O <sub>2</sub>                        | Li <sub>2</sub> 0                                                                                                 | 2300 - 2600 C<br>Vapor phase burning                  |
| Li / 21% O <sub>2</sub> / Ar               | Li <sub>2</sub> 0                                                                                                 | 1800 C (0.07 atm)<br>Vapor phase burning              |
| Li / Dry Air                               | Li <sub>2</sub> 0, Li <sub>3</sub> N, Li <sub>2</sub> CO <sub>3</sub>                                             | 1260-1350 C<br>Vapor phase burning                    |
| Li / Moist Air                             | Li <sub>2</sub> 0 , Li <sub>3</sub> N, Li <sub>2</sub> CO <sub>3</sub> , LiOH                                     | 1150 C<br>Vapor phase burning                         |
| Li/CO <sub>2</sub>                         | Li <sub>2</sub> O , Li <sub>2</sub> CO <sub>3</sub> , C, Li <sub>2</sub> C <sub>2</sub>                           | > 1800 C<br>Vapor phase burning                       |
| Li / CO <sub>2</sub> / N <sub>2</sub> / Ar | Li <sub>2</sub> 0 , Li <sub>2</sub> CO <sub>3</sub> , Li <sub>3</sub> N, C, Li <sub>2</sub> C <sub>2,</sub> CO, C | Vapor phase burning                                   |
| Li / N <sub>2</sub> (dry)                  | Li <sub>3</sub> N                                                                                                 | 820-830 C<br>Surface burning                          |
| Li/C                                       | Li <sub>2</sub> C <sub>2</sub>                                                                                    | Surface burning                                       |
| Li / C <sub>2</sub> H <sub>4</sub>         | LiH, Li <sub>2</sub> C <sub>2</sub>                                                                               | Surface burning                                       |





#### **Lithium Combustion Temperatures**


- High temperature reaction product distribution of metallic lithium within a lithium-ion cell has not been determined but expect that this can produce a high heat release rate
  - Typical electrolytes include molecules with carbonate groups (OCO<sub>2</sub>-)
  - Postulated anode/ electrolyte decomposition products include: Li<sub>2</sub>0, Li<sub>2</sub>CO LiOH
- It has not been determined, but if sufficient heat is released by combustion of one dendrite to ignite surrounding dead lithium, thermal runaway may become more likely

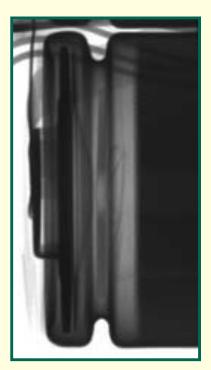


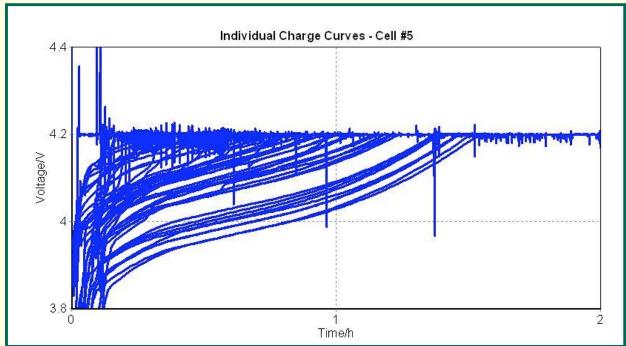


#### **Lithium Plating in Commercial Cells**

 Lithium plating can occur in commercial cells due to a variety of cell manufacturing problems, as well as usage and aging scenarios



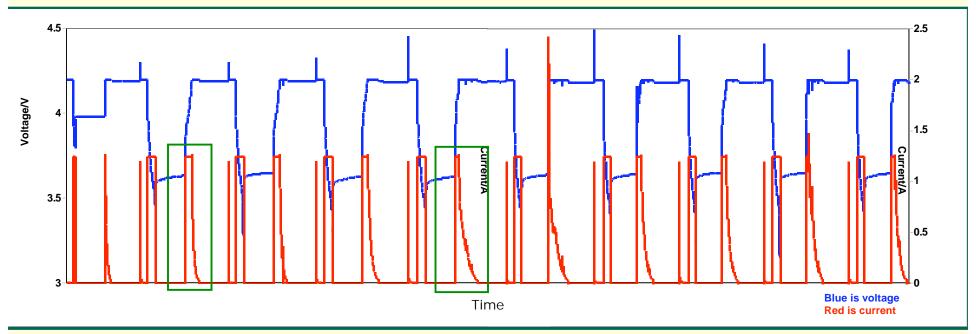

 $E^{x}(40)$ 






#### Behavior of a Cell with Lithium Plating

- Dendrite shorting has been observed in test cells by other researchers
- Dendrite shorting has been observed by Exponent in commercial cells










### Behavior of a Cell with Lithium Plating



Normal Taper Current Profile **Extended Taper Current Profile** 

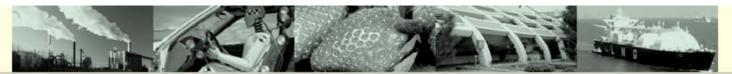



#### Can Existing Dead Lithium Be Oxidized Away?

- Possibly no known studies available
- Oxidation rate of dead lithium
  - Likely to be controlled by diffusion rate of reactants through SEI layer
    - Thickness / permeability of SEI
    - Reactant species distribution surrounding the dead lithium
    - Temperature
  - Should not be significantly affected by cycling although this could have a secondary roll in affecting reactant species distribution
  - Likely to vary with cell model








#### Can Existing Dead Lithium Be Oxidized Away?

- Could be studied in commercial cells
  - Cause plating through severe cycling regime in commercial cells, particularly after aging
  - Subject cells to various conditioning regimes such as
    - Elevated temperatures at full charge
    - Elevated temperature at low charge
  - Examine cells for evidence of lithium metal and lithium metal oxidation
    - Visual exam
    - ARC
    - SEM / EDS
    - XRD

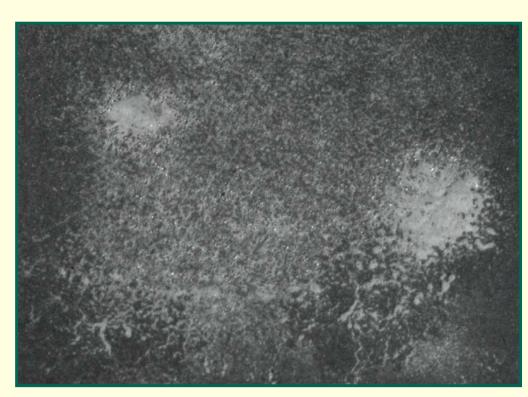




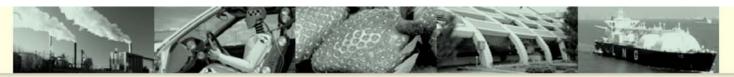



#### **Conclusions**

- Lithium plating can have many deleterious effects on cells
- Lithium plating can enhance the likelihood of cell thermal runaway due to the formation of a mat of dead lithium in proximity to an area of dendrite formation
- Localized lithium plating and shorting behavior consistent with dendrite formation has been observed in commercial cells
- Possible that dead lithium, once formed could be eliminated through oxidation






#### Acknowledgements

- Many Exponent Battery Task Force members contributed images and research to this presentation including:
  - Betar Gallant
  - Quinn Horn
  - Kevin White
  - Noah Budiansky
  - Priya Gopalakrishnan
  - Marcus Megerle
  - Troy Hayes
  - Ramesh Godithi







#### References

- Dolle, M., et al, "Live Scanning Electron Microscope Observations of Dendritic Growth in Lithium/Polymer Cells,", Electrochemical and Solid State Letters, 5(12), 2002, pp. A286-A289
- Hill, P.G. & Peterson, C.R., <u>Mechanics and Thermodynamics of Propulsion 2<sup>nd</sup> Edition</u>, Addison-Wesley Publishing Company, New York, 1992
- Gireaud, L. et al, "Lithium metal stripping/plating mechanisms studies: A Metallurgical Approach," Electrochemistry Communications, 8, 2006, pp. 1639-1649
- Glassman, I., Combustion, 2<sup>nd</sup> Edition, Academic Press Inc., Harcourt Brace Jovanovich, Publishers, New York, 1987
- Grosse, A.V., & Conway, J.B., "Combustion of Metals in Oxygen," Industrial Engineering Chemistry, 50(4), April 1958, pp. 663-672
- Moore, J.T., et al, "Combustion of Lithium-Aluminum Alloys," Combustion Science & Technology, 177(4) pp. 627-660
- Mores, S., and Ottaway, M., "Safety Studies on Lithium Batteries Using the Accelerating Rate Calorimeter," &th International Meeting on Lithium Batteries, Edinburgh, July 1998
- Orsini,F., et al, "In Situ Scanning Electron Microscopy (SEM) Observations of Interfaces Within Plastic Lithium Batteries," Journal of Power Sources, 76, 1998, pp. 19-29
- Orsini, F., et al, "In Situ SEM Study of the Interfaces in Plastic Lithium Cells," Journal of Power Sources, 81-82, 1999, pp. 918-921
- Rhein, R. A., "Lithium Combustion: A Review," NWC TP 7087, Naval Weapons Center, December 1990
- Steinberg, T.A., et al, "The Combustion Phase of Burning Metals," Combustion and Flame, 91, 1992, pp. 200-208
- Rosso, M., et al, "Dendrite Short-Circuit and Fuse Effect on Li/Polymer/ Li Cells," Electrochimica Acta, 51, 2006, pp. 5334-5340
- Spotnitz, R., & Franklin, J., "Abuse Behavior of High-Power, Lithium-Ion Cells," Journal of Power Sources, 113, 2003, pp.81-100
- Tatsuma, T., et al, "Inhibition Effect of Covalently Cross-Linked Gel Electrolytes on Lithium Dendrite Formation," Electrochimica Acta, 46, 2001, pp. 1201-1205
- Xu, K., "Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries," Chem. Rev. 104, 2004, pp. 4303 4417
- Yamaki, J., et al, "A Consideration of the Morphology of Electrochemically Deposited Lithium in an Organic Electrolyte," Journal of Power Sources, 74, 1998, pp. 219-227
- Yoshimatsu, I., et al, "Lithium Electrode Morphology During Cycling in Lithium Cells," Journal of the Electrochemical Society, 135(10), 1988, pp. 2422-2427



# Questions?

